180 research outputs found

    Inflammation in the CNS: advancing the field using intravital imaging

    Get PDF
    Inflammation of the CNS can have devastating, long-lived, and in some cases fatal consequences for patients. The stimuli that can induce CNS inflammation are diverse, and include infectious agents, autoimmune responses against CNS-expressed antigens, and sterile inflammation following ischemia or traumatic injury. In these conditions, cells of the immune system play central roles in promulgation and resolution of the inflammatory response. However, the immunological mechanisms at work in these diverse responses differ according to the nature of the response. Our understanding of the actions of immune cells in the CNS has been restricted by the difficulty in visualising leukocytes as they undergo recruitment from the cerebral microvasculature and following their entry into the CNS parenchyma. However, advances in in vivo microscopy over the last 10-15 years have overcome many of these difficulties, and studies using these forms of microscopy have revealed a wealth of new information regarding the cellular and molecular mechanisms of CNS inflammation. This Research Topic brings together state of the art reviews examining the use of in vivo imaging in investigating inflammation and leukocyte behaviour in the CNS. Papers in this Research Topic describe how in vivo microscopy has increased our understanding of the actions of immune cells in the inflamed CNS, following various stimuli including autoimmunity, infection and sterile inflammation

    T cell migration in intact lymph nodes in vivo

    Get PDF
    In the lymph node, T cells migrate rapidly and with striking versatility in a continuous scan for antigen presenting dendritic cells. The scanning process is greatly facilitated by the lymph node structure and composition. In vivo imaging has been instrumental in deciphering the spatiotemporal dynamics of intranodal T cell migration in both health and disease. Here we review recent developments in uncovering the migration modes employed by T cells in the lymph node, the underlying molecular mechanisms, and the scanning strategies utilised by T cells to ensure a timely response to antigenic stimuli

    Episcopic 3D Imaging Methods: Tools for Researching Gene Function

    Get PDF
    This work aims at describing episcopic 3D imaging methods and at discussing how these methods can contribute to researching the genetic mechanisms driving embryogenesis and tissue remodelling, and the genesis of pathologies. Several episcopic 3D imaging methods exist. The most advanced are capable of generating high-resolution volume data (voxel sizes from 0.5x0.5x1 µm upwards) of small to large embryos of model organisms and tissue samples. Beside anatomy and tissue architecture, gene expression and gene product patterns can be three dimensionally analyzed in their precise anatomical and histological context with the aid of whole mount in situ hybridization or whole mount immunohistochemical staining techniques. Episcopic 3D imaging techniques were and are employed for analyzing the precise morphological phenotype of experimentally malformed, randomly produced, or genetically engineered embryos of biomedical model organisms. It has been shown that episcopic 3D imaging also fits for describing the spatial distribution of genes and gene products during embryogenesis, and that it can be used for analyzing tissue samples of adult model animals and humans. The latter offers the possibility to use episcopic 3D imaging techniques for researching the causality and treatment of pathologies or for staging cancer. Such applications, however, are not yet routine and currently only preliminary results are available. We conclude that, although episcopic 3D imaging is in its very beginnings, it represents an upcoming methodology, which in short terms will become an indispensable tool for researching the genetic regulation of embryo development as well as the genesis of malformations and diseases

    Visualizing Vertebrate Embryos with Episcopic 3D Imaging Techniques

    Get PDF
    The creation of highly detailed, three-dimensional (3D) computer models is essential in order to understand the evolution and development of vertebrate embryos, and the pathogenesis of hereditary diseases. A still-increasing number of methods allow for generating digital volume data sets as the basis of virtual 3D computer models. This work aims to provide a brief overview about modern volume data–generation techniques, focusing on episcopic 3D imaging methods. The technical principles, advantages, and problems of episcopic 3D imaging are described. The strengths and weaknesses in its ability to visualize embryo anatomy and labeled gene product patterns, specifically, are discussed

    A Mouse Model of Vitiligo with Focused Epidermal Depigmentation Requires IFN-γ for Autoreactive CD8+CD8^+ T Cell Accumulation in the Skin

    Get PDF
    Vitiligo is an autoimmune disease of the skin causing disfiguring patchy depigmentation of the epidermis and, less commonly, hair. Therapeutic options for vitiligo are limited, reflecting in part limited knowledge of disease pathogenesis. Existing mouse models of vitiligo consist of hair depigmentation but lack prominent epidermal involvement, which is the hallmark of human disease. They are thus unable to provide a platform to fully investigate disease mechanisms and treatment. CD8+CD8^+ T cells have been implicated in the pathogenesis of vitiligo and expression of interferon-gamma (IFN-γ) is increased in the lesional skin of patients, however it is currently unknown what role IFN-γ plays in disease. Here, we have developed an adoptive transfer mouse model of vitiligo using melanocyte-specific CD8+CD8^+ T cells, which recapitulates the human condition by inducing epidermal depigmentation while sparing the hair. Like active lesions in human vitiligo, histology of depigmenting skin reveals a patchy mononuclear infiltrate and single-cell infiltration of the epidermis. Depigmentation is accompanied by accumulation of autoreactive CD8+CD8^+ T cells in the skin, quantifiable loss of tyrosinase transcript, and local IFN-γ production. Neutralization of IFN-γ with antibody prevents CD8+CD8^+ T cell accumulation and depigmentation, suggesting a therapeutic potential for this approach

    Visualizing leukocyte trafficking in the living brain with 2-photon intravital microscopy

    Get PDF
    Intravital imaging of the superficial brain tissue in mice represents a powerful tool for the dissection of the cellular and molecular cues underlying inflammatory and infectious central nervous system (CNS) diseases. We present here a step-by-step protocol that will enable a non-specialist to set up a two-photon brain-imaging model. The protocol offers a two-part approach that is specifically optimized for imaging leukocytes but can be easily adapted to answer varied CNS-related biological questions. The protocol enables simultaneous visualization of fluorescently labeled immune cells, the pial microvasculature and extracellular structures such as collagen fibers at high spatial and temporal resolution. Intracranial structures are exposed through a cranial window, and physiologic conditions are maintained during extended imaging sessions via continuous superfusion of the brain surface with artificial cerebrospinal fluid (aCSF). Experiments typically require 1–2 h of preparation, which is followed by variable periods of immune cell tracking. Our methodology converges the experience of two laboratories over the past 10 years in diseased animal models such as cerebral ischemia, lupus, cerebral malaria, and toxoplasmosis. We exemplify the utility of this protocol by tracking leukocytes in transgenic mice in the pial vessels under steady-state conditions

    CXCL12 Mediates CCR7-independent Homing of Central Memory Cells, But Not Naive T Cells, in Peripheral Lymph Nodes

    Get PDF
    Central memory CD8+ T cells (TCM) confer superior protective immunity against infections compared with other T cell subsets. TCM recirculate mainly through secondary lymphoid organs, including peripheral lymph nodes (PLNs). Here, we report that TCM, unlike naive T cells, can home to PLNs in both a CCR7-dependent and -independent manner. Homing experiments in paucity of lymph node T cells (plt/plt) mice, which do not express CCR7 ligands in secondary lymphoid organs, revealed that TCM migrate to PLNs at ∼20% of wild-type (WT) levels, whereas homing of naive T cells was reduced by 95%. Accordingly, a large fraction of endogenous CD8+ T cells in plt/plt PLNs displayed a TCM phenotype. Intravital microscopy of plt/plt subiliac lymph nodes showed that TCM rolled and firmly adhered (sticking) in high endothelial venules (HEVs), whereas naive T cells were incapable of sticking. Sticking of TCM in plt/plt HEVs was pertussis toxin sensitive and was blocked by anti-CXCL12 (SDF-1α). Anti-CXCL12 also reduced homing of TCM to PLNs in WT animals by 20%, indicating a nonredundant role for this chemokine in the presence of physiologic CCR7 agonists. Together, these data distinguish naive T cells from TCM, whereby only the latter display greater migratory flexibility by virtue of their increased responsiveness to both CCR7 ligands and CXCL12 during homing to PLN

    Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells.

    Get PDF
    Chemokines have a central role in regulating processes essential to the immune function of T cells, such as their migration within lymphoid tissues and targeting of pathogens in sites of inflammation. Here we track T cells using multi-photon microscopy to demonstrate that the chemokine CXCL10 enhances the ability of CD8+ T cells to control the pathogen Toxoplasma gondii in the brains of chronically infected mice. This chemokine boosts T-cell function in two different ways: it maintains the effector T-cell population in the brain and speeds up the average migration speed without changing the nature of the walk statistics. Notably, these statistics are not Brownian; rather, CD8+ T-cell motility in the brain is well described by a generalized Lévy walk. According to our model, this unexpected feature enables T cells to find rare targets with more than an order of magnitude more efficiency than Brownian random walkers. Thus, CD8+ T-cell behaviour is similar to Lévy strategies reported in organisms ranging from mussels to marine predators and monkeys, and CXCL10 aids T cells in shortening the average time taken to find rare targets
    corecore